

Tetrahedron Letters 44 (2003) 8037

Erratum

Erratum to "Metal triflates-methanesulfonic acid as new catalytic systems: application to the Fries rearrangement" [Tetrahedron Lett. 44 (2003) 6379]*

Omar Mouhtady, a Hafida Gaspard-Iloughmane, a,* Nicolas Roques and Christophe Le Roux a,*

^a Hétérochimie Fondamentale et Appliquée (UMR-CNRS 5069), Université Paul-Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 04, France

^bRhodia Organique Fine, Centre de Recherche de Lyon, 85 avenue des Frères Perret, 69192 Saint-Fons Cedex, France

The publisher regrets that the AH column of Table 2 should have read as follows:

Table 2. Catalysis of Fries rearrangements by MX₃-AH catalytic systems

Entry	Aromatic substrate ^a	Catalytic system		Product, yield ^b (%) and time
		$\overline{MX_3}$	АН	
	1a	Sc(OTf) ₃	None	1b , 67, 1 h
<u>!</u>	1a	$Sc(OTf)_3$	CH ₃ CO ₂ H	1b , 55, 1 h
	1a	Sc(OTf) ₃	MSA	1b , 82, 1 h
	1a	$Y(OTf)_3$	MSA	1b , 52, 1 h
	1a	$Y(NTf_2)_3$	MSA	1b , 20, 1 h ^c
	1a	$Y(OMs)_3$	MSA	1b , 3, 5 h ^d
	2a	$Y(OTf)_3$	MSA	2b , 82, 5 h
	3a	$Y(OTf)_3$	MSA	3b , 87, 5 h
	4a	$Y(OTf)_3$	MSA	4b , 80, 5 h
0	5a	Sc(OTf) ₃	MSA	5b , 72, 16 h ^e
1	6a	$Y(OTf)_3$	MSA	6b , 60, 2 h 30 ^{f,g}
2	7a	$Y(OTf)_3$	MSA	7b , 60, 2 h 30

^a Conditions: Aromatic substrate/ $MX_3/AH = 1/0.05/0.1$ molar ratio except for entry 10 where this ratio is 1/0.1/0.2 and entries 11 and 12 where this ratio is 1/0.2/0.4. Reactions carried out at 100°C using toluene as the solvent (c = 0.867 M relative to the aromatic substrate) except for entries; aromatic substrates: naphthyl acetate (1a), naphthyl hexanoate (2a), naphthyl isobutyrate (3a), naphthyl cyclohexylcarboxylate (4a), naphthyl benzoate (5a), 3-methoxy-1-phenyl acetate (6a), 3-methyl-1-phenyl acetate (7a).

^b Products: 1-hydroxy-2-naphthyl pentyl ketone (**2b**), 1-hydroxy-2-naphthyl isopropyl ketone (**3b**), 1-hydroxy-2-naphthyl cyclohexyl ketone (**4b**), 1-hydroxy-2-naphthyl phenyl ketone (**5b**), 2-hydroxy-4-methoxyphenyl methyl ketone (**6b**), 2-hydroxy-4-methylphenyl methyl ketone (**7b**).

^c Only traces of **1b** were obtained under the same conditions when Y(NTf₂)₃ was used alone.

^d No reaction occurred under the same conditions when Y(OMs)₃ was used alone.

^e This experiment has been carried out at 150°C using 4-chlorotoluene instead of toluene.

f This experiment has been carried out in nitroethane instead of toluene and gave a similar yield.

^g Containing 4-hydroxy-2-methoxyphenyl methyl ketone (yield 7%).

^{*} DOI of original article: 10.1016/S0040-4039(03)01599-5

^{*} Corresponding authors. Fax: (33) 5 61 55 82 04; e-mail: leroux@chimie.ups-tlse.fr